
Intro/Motivation
Existing samplers on the Android 
Marketplace are either expensive 

and hard to use or lack major 
features required by musicians.

Beginner musicians need a way to 
easily create sampler-based music 

on their Android devices without 
being overwhelmed or committing to 

a high price.

Our solution to this problem is to 
create an application for Android 
that presents all the features of a 

high-end sampler in a more intuitive 
way, then offer it at a price point 
occupied by low-end samplers.

Potential users of this product 
include new musicians who want a 

simple and inexpensive sampler 
and experienced musicians looking 

for a lightweight sampler for 
on-the-go use.

Design Approach
The sampler was broken into a number of smaller effects 

modules. Then, the modules could be developed individually and 
integrated later. All modules were implemented in Java.

Conceptual Sketch

Sound Effect Device for Musicians
Team: sdmay20-56

Website: http://sdmay20-56.sd.ece.iastate.edu
Client/Advisor: Dr. Randy Geiger, Dr. Degang Chen

Members: Dalton Sherratt, Eric Stablein, Zach Besta

Project Resources
Programming 

Language
Java

Android Libraries
MediaPlayer
SoundPool
AudioTrack

Development Tools
Android Studio

Source Control
GitLab

Testing
Mockito

JUnit

Functional Requirements
● Capable of recording and looping 

audio
● Include features to adjust Pitch, 

Speed and Tempo of audio files
● Can Save tracks to Android file 

system

Other Requirements
● Warn users about hearing 

damage at high volumes
● Make sure users know to take 

breaks to avoid repetitive stress 
injuries

Environment
● Run on modern Android devices 

including smartphones and 
tablets

● Meet the requirements of the 
Google Play Store
○ Must target API 28+

Goals
Create an easy to use sampler for 
the Google Play Store that offers 
musicians high-end functionality 

with a simple user interface 

Testing
Originally, testing was to be performed with College of Music 

students to collect their feedback on the application’s features. 
However, due to the university closure, testing was switched to 

be focused primarily on functional testing.

Functional testing was split into multiple stages. The project was 
split into several smaller modules, then each module was tested 
for functionality on its own. Next, the group performed integration 

testing.

We also implemented Mockito and JUnit tests.

Engineering Standards
and Design Practices
Google Play Store standards and 

recommendations
Java Code Conventions

Android Core app quality standards
.mp3 and .wav audio formats

IEEE terminology


