Sound Effect Device for Musicians

Team: sdmay20-56
Website: http://sdmay20-56.sd.ece.iastate.edu
Client/Advisor: Dr. Randy Geiger, Dr. Degang Chen
Members: Dalton Sherratt, Eric Stablein, Zach Besta

Goals Intro/Motivation
Create an easy to use sampler for ——— Existing samplers on the Android
the Google Play Store that offers 552 @ © YT Marketplace are either expensive

musicians high-end functionality Sound Sampler 9000 and hard to use or lack major
with a simple user interface | et S features required by musicians.

Functional Requirements

e Capable of recording and looping

audio | s T

e Include features to adjust Pitch, Ditap Shify =
Speed and Tempo of audio files ' Sy |

e Can Save tracks to Android file

system

-

Android Emulator - samsung_s10_AP... Android Emulator - samsung_s10_AP...

646 @ @ "l |

553 @ ®

Beginner musicians need a way to
easlly create sampler-based music
on their Android devices without
SRS heing overwhelmed or committing to
a high price.

MixSounds AddSounds

. click on a square to assign audio-.

Our solution to this problem is to

_ | create an application for Android
v . . . { that presents all the features of a

AN high-end sampler in a more intuitive
way, then offer it at a price point

. . . &% occupied by low-end samplers.

Potential users of this product
iInclude new musicians who want a

Other Requirements
e \Varn users about hearing

damage at high volumes

e Make sure users know to take
breaks to avoid repetitive stress
Injuries

EnVIronmen_t | s — . simple and inexpensive sampler
° Run on modern Android devices == T NG (T w——— — - and experienced musicians looking
including smartphones and — ’ —

for a lightweight sampler for

tablets on-the-go use.

e Meet the requirements of the

Google Play Store
o Must target API 28+

’»

Android Emulator - samsung_s10_AP...
552 @ @ Wl |

Drumpad

4 ,
Design Approach Loop® - . o ’R-_ecéord: Project Resources gl‘iiﬁgﬂgil‘oié"iiggiiZtgigﬁYggiigiég%Z?j:"ee"”::‘ :
The sampler was broken into a number of smaller effects | Noise Generator @ Programming sl R e
modules. Then, the modules could be developed individually and Language Inagebutton Sempoup = findYiedyLd(R. 4. tenpoup)
integrated later. All modules were implemented in Java. == InageButton Lempodoun = findVieuByTa(R. . tenpodowr);
Android Libraries }//E:;glo: myer.create(gontexts) this, R.raw.soundl);
{ } e ,[J MediaPlayer - |
L . J SoundPool PPt el il il M
l , AudioTrack T T
Sl | Development Tools " eh (vgettd g
: ' ‘ ¢ ¢ | Android Studio i
{ J {] [J _[J { } - = Source Control =
¢ ¢ ¢ E GitLab
— ; Testing i
Conceptual Sketch — A Mockito (d)
JUnit Lk

break;

Engineering Standards

and Design Practices

4 o m Google Play Store standards and

= ' recommendations

* Method to generate sine wave white noise .
*x @param frequency is the frequncy of the wave in Mhz Java COde COnvent|0nS

*x @param duration is the number of seconds that the wave is generated Android Core app qua“ty standards
private void generateSoundWave(int frequency, int duration) { mp3 and WaVv aUd|0 fOrmatS

int sampleRate = 5000; //sampleRate, increasing this changes pitch IEEE termin()logy
byte soundDatal] = new byte[sampleRate * duration];

for(int i = 0; i < soundData.length; i++) {
double originalWave = Math.sin(2 x Math.PI * frequency * i / sampleRate);
double harmonicl = 0.5 *x Math.sin(2 % Math.PI * 2 % frequency * i / sampleRate);
double harmonic2 = 0.25 % Math.sin(2 % Math.PI x 4 x frequency * i / sampleRate);
// Add all the waves
byte sample = (byte)((originalWave + harmonicl + harmonic2) x 255);

Main Menu

Sound Editor

r Assign Sound

Save As

Save

® Record

2:17

\ / soundData[i] = sample;
}
u track = new AudieTrack(AudioManager.STREAM _MUSIC,
TeStI n g samp leRate
f : . : AudioFormat.CHANNEL _OUT _DEFAULT,
Orlglna”y’ teStlng Wa_S tO be performed Wlth CO”eg,e Of MUSIC AudioFormat.ENCODING_PCM_8BIT, soundData.length,
students to collect their feedback on the application’s features. AudioTrack.MODE_STATIC);
: : : : track.setVolume(1);
However, due to the university closure, testing was switched to rackowrite(coindbata, EEESEREERENG. soundata.lencthl;
be focused primarily on functional testing. track.play();
}
private void endSoundwWave(){
Functional testing was split into multiple stages. The project was track.stop();

}

split into several smaller modules, then each module was tested
for functionality on its own. Next, the group performed integration
testing.

We also implemented Mockito and JUnit tests.

